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ABSTRACT

The equations of motion for steady incompressible flow in an annulus

with fluid removal or injection at the porous walls have been reduced to a pair

of ordinary differentiz- equations by Terrill (3). Solutions for the case in

which one wall rotates are not yet available; however, the solution of the rela-

ted problem of a plane chanael with a moving wall can be expressed in terms

of the corresponding results (4, 5) for a stationary wall. That solution is ob-

taned in the present work. The solution is used to determine the drag on the

moving wall. Preliminary experimental results with an apparatus consisting

of a porous outer cylinder and a solid rotating shaft sized such that the radius

ratio is 0.926 indicate satisfactory agreement for the case of fluid injection;

however, there is poor agrecnent for the fluid removal case.
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CHAPTE RI

INTRODUCTION

This thesis covers an analytical study of the drag forces acting on a

shaft rotating concen•tricnlly in a stationary porous cylinder. through which

fluid is injected or withdrawn. The radius ratio of the annular seetion formed

by the stationary porous cylinder and the rotW"ug shaft is at least 0.0" in order

that the annular section may be treated as a plane channel. Design of an

experimental apparatus for testing the analytical study is also treated and

preliminary- experimental results are pre3ented.

The study is restricted to the steady lanminar. incompressible flow of

a Newtonian fluid.

Previous work will We cited with numbers in parentheses which refer

to the List of References.

A. Previous Work

A number of solutions for steady laminar flow in channels with porous

walls have appeared in the literature over the past few years. A.S. Berman

(1) presented the first solution to the Navier-Stokes equations for steady

laminar flow in a uniformly porous channel. Berman (2) also gave a solution

for the laminar steady-•tate i:,)w of an incompressible fluid in all annulus

formed by conce-ntric uniformly porous cylinders for the special case where

"• : " • ... -• • ... - '•* ,: - • •-- • L., --••,• •--•-•-•-- •-•.1
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k ~~th.! rate of fluid injection through -ine porous cylinder wa-s equal to the rate if

fluid withdrawal at the other porous wall. 1ft. AI. Terrill (3) redtcod the pro-

blem of laminar flow through a porous annalus with constant suction velocity at

the wall, and with swirl to the solution of fouir nonlinear differential equations.

Tcrrill and Shrestha (4) investigated incompressible laminar flom, in a chanael

with porous walls of different permeability and various combinations of flow

rates through the wails %lost recently. NI. S. Tsai (5) obtained solutions to

the channel problem with one wnall porous and to the annulus prohlem with one

- wail porous. f'sai ust-d the perturbation method (1). method of averages (6).

and numerical techniques to obtaiin solution for Will the ch-annel and annulus.

lic comup red the results of the aminulus and channel solutions and used thle

comnparisons to determine the volues of injection and suction rates and the

annulus radius r-atio for which the annulus may be treated as a Fiat channel.

I'sai's (5) results h: vc been cested experinicnz.-llv at. tile University oif

Teunessic by Dr. 11. Weissberg and Mr. r. Curlee. Thie results ind(iC.-tC a

-od Col rcraCiolh between Tsai's study and the e.'p-ýrimental data.

13. Present Work

The presenit work adidresses the problem of~ cxtcndiing rs;-ws ti)

investigaoiori to the case of a rotnting shaft. rather than a stationary- one. Use

is made of a plane channel an) rodma11.tionl to get .. 0novel Solution of the N'a- icr-

Stokes equation for tile tangential velocity dlistribution in an annulus with a
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a porous outer wall. An apparatus design for testing the plane channel

approx•imaLion and preliminary ex.erimn:tal results are presented.

4



CHAPTER II

EQUATIONS OF MOTION

A. Assumptions and Equations

The following assumptions are made in treating the equations of motion

for a shaft romating within a poreus cylinder:

1. The fluid flow is laminar, incomnpressible and fully developed.

2. The velocity of the fluid through the porous well is independent of

position.

3. The flow is axisv-•mmetric; the shaft and porous cylinder are

concentric.

Tsai's (-5) results for a plane channel approxinmation to the annulus

problem indicate that one may use the approximation. with less than 5-perment

error in the calculated pressure drop, provided the radius ratio of the annulus

section is greater than 0.9 and the wall Re) nolds number for the plane channel

is less Imn 2.0. The waii Reynolds numbLer is defined as R p~bh/p; where V

is the radial velocitN of the fluid through the porous wall (positive for suction),

h is the distailce separating the plane solid wall from the plane porous wall,

a is the v;iscosity of fluid, -nd p is the mass density otf the fluid.

.t
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Tsai's (5) plane channel approximation solition for the annular section

w%-as witlh a stationary solid wall. In the present work this approximation is

generalized to treat the case of a concentrienaly rotating solid shaft. The

rotating shaft, as shown in Figure 1, corresponds to a plane solid wall moving

in a direction pero,_ndicular to the average fluid motion.

A sei of Cartesian coordinates is chosen for the plane channel approxi-

mation such that the x coordinate direction corresponds to the axial direction

of thc annulus section. The y direction corresponds to the radial direction of

th , annulus. The moving plane solid wall is physically located at y = 0 and

corresponds to the surrace of the shaft in the annular section. The z direction

completes the rig,,at-handed orthogonal coordinate system indicated in Figure

I and corresponds to the tangential velocity component of the shaft in the

antular section.

The Navier-St-o,.es equations of motion for the steady, laminar.

incompressible flow in the plane chamnel are

AmU i-V, 61W ýix\ax At ~ 0(111)2

av) 'v v a v (2)pu -x -8 a -

S• ." _•+' '" ,

i- -~~~-~" :si~~ -a- -
P. ----- (3)
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where u, v, and w are the fluid velecity components in the x, y, and z coordi-

nate directions, respectivcly, and p is the fluid pressure.

The equation of continuity for an incompressible fluid is

C1v + _• + 0 (4)

The axial velocity component u and the pressure p are assumed to be

functions of the coord*ates x and y only, This assumption is based on the

shaft rotating concentrically in the porous cyl ",Air; extending this to the

plane channel approximation indicates that the distance h separating the

stationary porous wall and the solid moving wail remains constant and inde-

pendent of coordinate directions. The velocity at the stationarry porous wall

is assumed to be perpendicular to the wall with the constant' value V and the

velocity component v is assumed to be a function of the y coordinate only.

The velocity component w in -'ae z coordinate direction is also assumed

to be. a function of the coordinate y only. The assutmptions are summarized as

follows:

u = u (M.,y)..

p=p ix.y),

v = v (y).

w w (y). (5)

I. In practice the constant velocity through :he wall %%as achieved by
insuring that the pressurs drup across the porous wall was much greater
than the axial pressure diop in the annulus.
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Suh&tituting equation (5) into equations (1), (2), (3), and (4) leads,

respectively, to

P u v a,. + (6)

-a + (7)

p vt (8)

(9)

The boundary conditions are

Iu (. 0) 0. V (0) 0o. w (0) =W

Su (x. h) 0. v (h) V. and w (h) = 0 , (10)

whe dcie thc velocity V is Ele injection or suction velocity at the porous boundary

and W is the velhwity ef die moving wall.

"Tsa. (15) and Terrill (6) reduced equations (6) and (7) subject to

equation (5) to the dimeisi.,a lcss ordinary differential equation

F"'+ R(F'F" - FF"') 0 , (11)
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where F is a function of the dimensionless va-!able A y/h and R Is the wall

Reynolds number. The velocity components u and v are related to F and P1 by

u (X, Y) ~) - F, (A)

v(y) = VF (X , (i2)

where U (0) is the average velocity in the x direction at x 0. The boundary

conditions on equation (11) are found by using equations (10) and (121.

F(0) = 0. F(1)

F'(o) 0, F'(1) = 0 . (13)

Now, in addition to solutions for 6 and 7. the solid moving wall

requires that , solution bc found for equation (S). The velocity component in

the z coordinate direction is assumied to be of the form

w = WG\(X) (14)

where WV is the velocity of the solid walll and G (A) is a dimensionless function

of the variable A. Substitution of equation (14) in (S) and use or (12) along

with the definition of wall Reynolds number R = A ieids
p

G"(X) = R F(X) G(A) . (15)

*
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The boundary conditions on equation (15) are found from equation (14)

and the no slip condition at the solid and porous wails:

G(0) t-i, G(i) 0. (16)

The solution to equation (15) subject to the boundary conditions (16) is

0 0
G(A) =t - ) 17)

J" exP RF(-y) dy d
0 (

It is interesting that dhe reduction of equations (6) and (7) to the

dimensionless ordi.ary differcntial equation (11) is independent of the motion

of the wall in the z coordlinate direction; hence- the resulting velocity compo-

nents in the % ana y coordinate dirt tions are valid. regardless of tfhe motion

of the vall in the z coordinate direction. iHwever. equation (8) and its re-

duction to equation (15) are dependent on the solution to equation (11). It has

thus been shown that the existing solutions of equation (I 1) can be incorpora-

ted into the new results, equation (17). to describe the case of shaft rotation

and, indeed, this is the procedure that is used in the present work.

B. Equation for Viscous Drag

The ::hearing stress, i. e., drag force in the z direction per unit area of

the moving wall, is

D = a •. + • ll )

:~ ~ ~ ~ ~~C : , ,- Dz• -. •- ••-_.••••• •••••.. L--•••
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Equations (5) and (14) are substituted into equation (i8) to yiele

D = GG' (0)) F'.1(0)

where the constant K is defined aslW
K A- .(20)

The expression for G' (0) is found from equation (17) so that equaiion

(19) may be written as

D K (2i)
J exp ( RF(j d daA

It is interesting to take a closer look at equation (21). The case of o

flow through the porous wall, R 0, corresponds to the value unity for the

denominator; hence. the ratio of the drag forces wiqthout flow to the drag forces

with flow through the wall is just the value of the denominator of equation (21),

that is l/CG"(0).

The viscous dr-ag forces acting on a rotating shaft may be determined

experimentall:y by measuring the time rate of change of angular velocity pro-

vided that all externa.l forces are limited to those associated with viscous

drag. An expression for angular momentum decay is

dw
L -J 22)

utere L is the applied torque or, in this case. the product of the viscous

force arid the moment arm. J. is t'e rmass moment of inertia and w is the

-= - -A
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angular velocity. Equation (19) is the expression for the viscous drag force

per unit area an-d may be converted to art expression for the drag torque by te

appropriate introduction of shaft area exposed to the viscous drag and the mo-

ment arm; hence,

$L =DAr ,(23)

where A is the shaft surface area and e is the shaft radius. Equation (23)

may be expanded to

L (2) (.r) G' (0)) (24)

However. IV is the v-locity )f a point on the shaft and is

W r,' , (25)

where te is the angular rate of the shaft. EquatiL ýs (25) and (24) Com-

bined become

L - G'I (0) &j (26)

where

K1 -

h "

Since equations (22) and (26) are both expressions for the shaft torque due to

viscous forces. they mar be combined to yield

dw

-J dt (27)
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Equation M27) is subject to

" = c 0att 0 , (28)

where w•0 is the angular Late at the start of any rundown.

A solution to equation (27) subject to the boundary condition (28) is

In w K1- G,(W t . (29)co0 J

In termis of the time period per revolution, T = 27-/W, cqtation (29) may be

wri.tten as

-n tO) (30)T J

where -'0 is the initial time period for one revolution of the shaft and T is n

continuous variable which expresses the period at any subsequent time.

Equation (30) provides the basis for the experimental work to be discussed in

the next chapter.



CIIATIi"ER III

EXPERIMENTAL WORK

The objective of the expe:rimental part of the work is to make a preli-

iunary investigation into the validity of using tne previously discussed plane

channel approximation in solving the Navier-Stokes equations for a solid shaft

rotating in a porous steeve. The equipment described in Tsai's (5) investiga-

tion was available for this work; however, modifications were necessary to

provide for rotation of the shaft. rhe experimental apparatus %%as modified

accordingly and is uiescribed below.

Our exnperimental test of the present thleor.. tical ,vork consisted of

using the rundown history of a rotatin-g shaft to obtain experimental values of 4

G' (0) from equation (30). "'That work is also described in this chaptar.

A. Apparatus

In the following description of the test equipment. reference is made to

the diagram of the appairatus (Figure 2) and the lettered parts designated on

the diagrami.

The ends of the porous sintered titanium cylinder (E) are attached to

the f!lmges (F) and (G) at the epoxy joints (J). These flaages are attached to

Rfanges (R) and (L), thus mounting the .)rous cylinder inste he jacket (Ill.

14$
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which is used tG supply air or to remove it from the outside of the porous

cylinder. Three rods (&`, equally spaced around the fl:ngee are used to pro-

tect the thin joints (J) from rupture in case of exposure to excessive air pres-

sure in the jacket.

The rotating shaft (B) is supported in the vertical direction by the gas

thrust bearing (A). Thrust bearing (A) also offers some lateral support.

"the uppermost part of the rotating shaft is supported radially by gas bearing

(C). Both gas hearings (A) and (C) help maintain a concentric condition o?

the rolating shaft (B) and the stationalry purous cylinder (E).

"The annular channel consists of the space between the rotating shaft

(B) and the porous cylinder (lE). Calming chambers are provided by the

spacers (K) i,,tween the fla-Ages (M) and (R) and (M) and (L). The cham-

bers arc used for calming the air entering or being discharged-. There are

thus five fiow paths throug.i which the airstreanm can enter or leave the annular

channel: the port located in the center of jacket. (11). the two ports (not

shown) passing thrmug, the spacer rings (K) into the calming chambers at

each end. and the tas bearings (A) •nd ,C). The two ports labeled (N) are

used for monitoring the pressure in the calming chambers.

Rotating shaft (B) is actuated by turbine (I)) and two jets not shown.

"the shaft is ccnstruicted of aluminum and is machined both outside diameter

and inside (diameter. "The shaft provides a radial gap of (. 05tWS in. The

radius ratio for this shaft and the porous cylinder (E) is 0.9263. The shaft
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(B) wall thickness is small in order to keep the inertia to a small value and,

-' hence, makes the effects of the viscous drag more pronounced.

Ile bottom gas bearing fed by (Q) and the top gas bearing fed by (P)

were designed to give minimum drag. The gas bearing drag and end effects

were calculated to be less than three percent of the maximum drag anticipated.

Shaft speed is determined by utilizing a dark spot on the shaft, a

Mechanical Technology, Inc., Fotonic sensor and two Hewlett-Packard time

interval counters. The Fotonic sensor generates one pulse per revolution of

the shaft. The two Hewlett-Packard counters are used to measure the time

for one complete revolution of the shaft and the time between shaft period

measurements. The shaft rundown history is obtained by recording the coun-

ter readings.

B. Description of Experiments

Tests were rui with fiitered dry air as the test fluid for wall Reynolds

numbers ranging from +.1.359 to -5.241. 'Mass flow rates through the porous

wall were adjusted and the wvall Reynolds numbers were calculated from these

rates and the laboratory conditions. An exarmple of these calculations is

shown in the Appendix. The calculated wall Reynolds numbers were uscd with

Tsai's (5) perturbation method to provide values of F in equations M17). The

results were used to determine the theoretical value of the denominator of

equation (21) and, hence, G' (0) for the flow, conditions imposed during the

experi mrnns.



"The experiments and data acquisition were designed tk cbtain an accu-

rate graph of equation (30) In versus time for wall Reynolds numbers cor-
-r

responding to those used in the analytical determination of G' (0) .2 Accurate

measurements of shaft rotational period and elapsed time were accomplished

with precise electronic counters and a shaft rotation sensing device, as des-

cribed previously. The mass flow rates into the test apparatus were accounted

for with calibrated critical orifices and electronic mass flow meters. Fluid

temperature, room temperature and atmospheric pressure were monitored

during the testing and were used in the calculations for mass flow rates, fluid

viscosity and wall Reynolds numbers. Trests were run with no mass flow

through the porous wall. mass flow outward and mass flow inward. These

conditions are described on the following pages.

IP)3itivc Reynolds Numbers

Positive wNai1 acynolds numbers correspond to the case when fluid is

allowed to flow radi:ffiv outward through the porous cylinder (E) in Figure 2

(p. 13). The fluid entered the system through bottom bearing and was

monitored with a mass flow meter, The various wail Reynolds numbers were

obetained with a calibrated critical orifice to control the flow into the bottom

port (JN). The fluid entered the ann:dar section at the bottom and flowed

2. The equation predicts that such a graph should be linear with its

slope equal to -KIG' (0)/.!,
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axially and radially outward into the jacket t(H). which was maintained at

atmospheric pressure. The fluid flowing out of the jacket (H) was monitored

with a mass flow meter to insure that only the fluid flowing into the annulus

section at the bottom llowed axial.y and radially thriough the porous cylinder

). - luid flow to v :l) n(arint.f was discharged throjgh :a resistance at port

(N) and was adjusted to insure that no fluid from the top bearing entered the

annular section at the top.

Negative Reynolds Numbers

,Ncgat ire wall Reynolds numbers correspond to fluid flow into the

jacke. tit. (Figture 2, p. 15) and through the porous cylinder (E) into the

annuhis formld by porous cylinder (E) and shaft (B). The fluid was dis-

charged through top port (N) and ports in the top bearings support. Fluid

for dhe hottoni bearing was withdrawn from the bottom calming chamber at

lottomll port (N and was nioenitored with a mass flow meter to insure that

,rnmv fluid for the Ibot•t•o hearing was discharged at bottom port (N). A cali-

brated critical orifice controlled the flow entering thc jacket (11).

Zero) RenoldIs Number

T'he zero wall Rernoids numlber corresp)onds to zero induced fluid flow

in the annular section formed by shaft (B) and porous cylinder (E) in Figure

2. Fluid iront the bottom thrust bearing was discharged at bottom port (N).

Fluid for the top bearing was vented through ports in the bearing support

__ ._ -



plate and also through top part (N). "The jacket (H) was closed to .insure that

no fluid flowced through the porous cylinder (E). Withi this arrangement there

is also no sxial flow. The pressure inside the jacke' (It) and calming cham-

bers at each end of the appaatu•s was monitored to insure that it was atmos-

pheric.

The test procedure for all three flowv conditions wxas as follows:

1. The flow conditions were adjusted to obtain a desired wall Reynolds

number. Calibrated critical orifices and electronic mass flow meters along

with flow restrictors were utilized to accomplish the desired flow condition

for each experimental run. The shaft w\as rotated slowly during the flow

adjustments to insure a concentric relationship between the shaft (Bi and

porous cylinjder (E) of Figure 2 (ps. 15). The fluid temperature, room

temperaLure, and barometric pressure were observed and recorded for each

experi mentalI run.

2. T[he shaft wals rotatced and allowed to stabilize. All controllable

e~xternal •.orque• were remov~ed so tha'• only the viscous drag imposed by the

flow conditions remained. The shaft speed deccay measurements were initia-

ted using one Ilewlett-Packard counter to measure the tinme period of one

complcLc revolution of the shaft and another to measure elapsed time. The

S~successive period measurements and elapsed time were nmde •tsing ",he gate

closing pulse of the time period counter to actuate the secondl counter in a

time interval mode. The nmnually opened grote of the time period counter
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s 2topped the time interval counter and closing of the gate after one complete

revolution of the shaft started the time interval counter for another elapse

time measurement. The operation of the. counters in this manner allowed the

time period per revolution and elapsed time between period measurement." to

be determined with an accuracy of 100 psee. The manual selection of the auto-

niatic timing sequence allowed the operator ample time to record the shaft

period and elapsed time before starting the next sequence. This procedure

resulted in 10 to ZO sec between shaft period measurements. The total time

elapsed for any experimental run w%-as from 200 to 300 see. The shaft speed at

the beginning of the test runs ranged from about 200 to 300 rpm.

3. Each flow condition was tested with the shaft rotating first in the

clock-wise direction and then in the counterclochlwise direction. This insured

that any asymmetry associated with rotational direction would be duly noted.

C. Experimental Data Treatment

"The .bjective in the treatment of the raw data is to generate an tecu-

rate shaft speed variation with time such that an experimental graph of equa-

tion (:30) can be obtained for each flow condition.

The output of ahc sh:tft rotation ! ensing device is typically a square

w%-ave electrical signal as indicated in Figurc 3. The raw dlati from the

cxperimi-nwl runs are the -'s and T's indicated in the figure. rbe determi-

nation of U-! L's also indicated in the fig re. is necessary in order to get an
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T T

t1 T_2 T3I.I

ti -

t3

Figure 3. F-1tanic sensor waveform and timing scheme.

accurate graph of the shaft speed variation with time. Figure 3 shows that

t [1/ + i T (31)

A small computer was used to obtain values of t from equation (31)
n

and to compute the corresponding left side of eqt;ation (31), "The determina-

tion of the mass moment of inertia J. which appears in equation (30). is dis-

cussed in the Appendix.

A reirression analysis was used to fit a straight line to the data in TO/T

versus time for each experimental run. This procedure gives the slope and

intercept of the fitted line and also the coefficient of a 9.5-,ervent conPf-3nce

interval for these two stat'steal parameters.
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The t-distribution was used for the 95-percent confidence interval

determination. This was based on the generally accepted value of 30 data

points above vwihich the normal distribution is used and below which the

t-distributic-i is used. Most of the. experimental runs in the present work con-

tained less than 30 data points.

D. Results

The experimental vadues for G' (0) were obtained from equation (30)

using the experimental slopes to obtain values of -KIG' (0)/J. The slopes

were deter• .ined from a least squares straight line fit of the experimental data

as previously explained. The right side If equation (30) represents the slope

and the time variable t; hence, the coefficient of t %as set equal t- the slope

and the drag ratio. G' (0), was calculated for each experimental run. A typi-

ca. example of this calculation is shown in the Appendix.

A total of 36 experimental runs were made at nine different %wall

Reynolds numbers. "rnble I is a comparison of the dhcoretical and e.xperi-

mcn.nl results for the 36 runs. lRpeatability of the data was good within 5

percent for more than one run a't the same wall Reynolds number. Several

differeni. runs were made on different (lays at wall Reynolds numbers equal to

zero and Table I indicates that the repeatibility is excelient.

Figures 4 through 12 iliustrate typical runs for various Reynolds

numbers. Each figure shows the theoretical line calculated from equation



24

".----I --
..- •q ,f . .

m 0o t - _ m

c cl elc;e l am w

B z, I. In

..- _ .. ,.- , Do • c ~ c -rc- V3 s- -I --' : ---~ >:s ,; ... ..~ 0
Z • •T I ; T0 i 0 "0,, "•

S=._ -- ___ ,.,'I• o

e Lt. u: rs Z, m• - . 9,, +

in c

<- ;" !=.T N 0 0 e

-- T _ - 0 2. r

,1 0 c es r 0 IN:

s r; 0

X - _ t A,

-~V to_ __~

I ii 8-0- ~a0 00 .~2.ii~1~'~ 101 ~ .~7.e2



- - --~ 77777-' -

25

COUNTER -
CLOCKWISE CLOCKWISE

RUNJ NO. 48-1 4-
REYNOLDS NO. 0 0

-UZSLOPE :6.0031 ± 0.0000 -0.00=4 40.W
.0INTERCEPT -. 00424+0.0013 *0068' 0.02

-0.

-0.4

-aC -- CLOCKWISE
.0.6 ~ COUNTERCLOCKWISE

-THEORETICAL
-0.7-

0 20 40 60 60 100 120 140 160 180 2)00220 240 260 280 300 320 34(o360
TIME (wc)

Figure 4. Shaft speed decay. Rt 0.

0.0
COUNTER -

.0.1CLOCKWISE -CLOCKWISE

RUN NO. 49-1 49-2
-0.2- REYNOLDS NO. -0 @248 -0.9248

SLOPE [.0.035 + tOOGO .0.0035 t 0.0000

.3INTERCEPr -0.0006 + 0.0002 .0.0040 + 0.0011
MX. rpm j 2524

.0.4 MA 253 248_

.0.5-
-CLOCKWISE

-0.6 COUNTERCLOCKWISE

-0.7 - THEORETICAL

-0.81 *

0 20 40 60 80D 1010160 li 1P0i lo2i022'0 2402 280nO300320340 3k
TIME Isecl

F igure 5. Shaft speed clecay. Rt -0.9248.
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0.0 -COUNTER-

CLOCKWISE CLOCKWISE
RUN NO. 50-1 50-2

-0.2REYNOLDS NO. -1.8496 -1.8496-0.2-
SLOPE -0.0039±0.0000 .0.0039±&0.0000
INTERCEPT -0.0030±0.0019 If0.00200318

-0.3 MX .02.MAtX. rpm 250 21 "

49'-0.4-

". .0.5-

-0.6 -.-- CLOCKWISE
-~COUNTERCL.OCKWISE

-0.7- THEORETICAL

-0.8- , i I I' I' i I i i I I i '

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

TIME (wec)

Figure 6. -Shaft speed decay. R = -1.8496.

0.0 .

COUNTER -
CLOCKWISE CLOCKWISE

-0.2- RUN NO. 51-1 51-2

SREYNOLDS NO. -3.0327 -3.0627
SLOPE -0.0045 ± 0.0000 -0.0042± 0.0000

SINTERCEPT .-0029 ± 0.0011 -0.00-J±0.0008-0.4 MAX. rpm I 251

'~-0.5-

-0.6-

.0.7- .• CLOCKWISE

COUNTERCLOCKWISE
-0.8 - THEORETICAL

-0.9 __j-

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

TIME(sec)

Figure 7. Shaft speed decay. R = -3.0,27.
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0.0
COUNTER-

-0.1 i CLOCKWISE CLOCKWISE
RUN NO. 52-1 52-3

-0.2- REYNOLDS NO. 4.1617
-. 3- SLOPE: -0.0051 0.0000 -0.0046 ± 0.0000

INTERCEPT -).0001 0.1,405 -0.0027± 0.0014
MAX. fpm 241 243

o -0.5

S-0.7

-0.8 -a--- CLC.CKWISE

0.9 -• COUNTERCLOCKWISE
THEORETICAL

0 20 40 60 80 100120140160180200220240260280300320340360

TIME (see)

Figure S. Shaft speed decay, it = -4. 1617.

0.0 COUNTER-

-0.1 CLOCKWISE CLOCKWISE
RUN NO. 1 53-1 53-3

-0.2 REYNOLDS NO.E -5.24077 -5.2407
SLOPE j-0.0058+ 0.0001 -0.0048±0.0002

-0.3- INTERCEPT ,0.0025 ± 0.0011 -0.0220±0.0059
MAX. rpm 223 222

-0.4

o .0.5-

-" .0.61

-0.7 CLOCKWISE
COUNTERCLOCKWISE

-0.8- - THEORETICAL

0 20 40 60 80 o0 120 140 160 160200220240 260 280 300 320 340 360
TIME (sec)

Figure 9. Shaft speed decay, 1= -5.2407.

-- ~? -
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COUNTER-

CLOCKWISE CLOCKWISE
0.0 RUN NO. W3 5 _

REYNOLDS NO. +1.0466 + #.0466
-0.1- SLOPE -0.0036 + 0.00011 ._0040+0.0001

-02 -INTERCEPT `0.0041 0 .0241±0.0087•.-0. -0.2 "-• MAX.,rprnm 270 -/ 248 '

-0.3I
'-0.4
.0.5-1

S"• • CLOCKWISE

-0.6- - CUNTERCLOCKW)SE
--- THEORETICAL

-0.7-

-0.8 , , --- , , " , , • , , - - 1
0 2040 60 80 100 120 140 160 180 200 220 240 260 280300 320 340 360

TIME (sec)

Figurc 10. Shaft speed decay, R= +1.0.466.

0.0

4.1 COUNTER -

".UNCLOCKWISE CLOCKWISE-- ' -0.2- RUN NO. } 59-1 %2
-0.3- REYNOLDS NO. +2.12"5 +2.1255

- SLOPE `0.0039 + 0.0002 -0.0046 + 0.0001
-0.4 INTERCEPT -0.0063 + 0.0102 + 0..060 + 0.0038

-0.5• MAX. 266 264

-0.6-

-0.7--
CLOCKWISE

-0,8-COUNYERCLOCKWISEI.- "- THEORETICAL N

0 20 40 60 80 100 120 140 16A 180 200 22o 240•26• 300320 340 360
TIME (e)

figurc Il. Shnfi. speed (decay, R = +2. 1255.
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0.0-

COUNTER --0.1 - CLOCKWISE CLOCKWCSE

-0.2 RUN NO. 60-1 60-2
REYNOLDS NO. +3.3587 + 3.35e7

-0.3- SLOPE -0.0040 + 0.0001 -0.0051 + 0.0000

0 INTERCEPT -0.0058 + 0.0039_+ 0.0016 + 0.0013
SMAX rpmn208 1 252

-0.5,

.0A6 - CLOCKWISE

-0.7 - COUNTERCLOCKWISE
"--" THEORETICAL

-0.•02b ; •8010" "'-
0 20 40 60 80 1 00120140 160 82;002202402028'0'300320 340360

TIME (see)

Figure 12. Shaft speed dceay, 1 = +3.3:587.
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(30) and the least squares line as fitted through the plotted experimental

points. There are two such experimental lines because d&ta werc taken for

two directions of rotation as explained in a previous section, Description of

Experiments. A table inserted in each figure also provides the following in-

formation:

1. The wall Reynolds number for the run.

2. The least squares intercept and its deviation (95- percent confi-

dence inte rval) for each direction of shaft rotation.

3. The least squares slope and its deviation'i (95-percent confidence

interval) ior each dtrection of shaft rotation.

4. The shaft speed at the beginning of data acquisition.

The results 4f the experimental runs are conveniently summarized by

plotting the theoretical (see section on Viscous Drag) and experinental values

"(Table I, p. 24) of the drag ratio G' (0), versus wall Reynolds numbers; such

a plot is shown in Figure 13. The computed values of G' (0) are given for

both clockwise and counterclockwise shaft rotation directions. Reasonably

good agreementt betm\cen the theoretical and experlmental values of G' (0) is

indicated for clockwise shaft rotat.ion with -all :1 Reynolds numbers from -1 to

-5; the range of reasonable agreement for counterclockwise shaft rotation

extends fvom -1 to -3. Examinuttion of Figures 5, 6, and 7 (pp. 25-26) indi-

cates that the slope for both rotating directions in tbe wall Reynolds number

3. A statistical test of the experimental data is discusscd in the

appendix.
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CLOCKWISE ROTATION

: COUNTERCLOCKWISE ROTATION

THEORETICAL

-6 -4-2 0 +2 +

WALL REYNOLDS NUMBER

Figure 13. Theoretical and experimental d-ag ratios.
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range -i to -3 are within 10 percert oi each other. Positive wall Reynolds

numbers resulted in no apparent agreement between the theoretical and

experimental results. This hack of nagreement is quite evident in Figure 13.

A discussion of this is given below.

E. Discussion

The lack of agreement býetween the theoretical predictions and the

experimental results noted above suggest, that anl Lbstability may exist for

po~sithce wallI Reynolds numbers. liurittg the experimenital runs wit~h positive

wa-.ll Reyniolds numbers, it was observed that a slight ind'.1ced vibration of the

aIpparatus wouild cause~ the shaft' to becomie un!-QabAe 1 and to stop (because of

contact between Oie shaft and either of the bearing- stops) inl .1 few revolution$.

This i-, thoughit v'j bc asstp.eiated with the stiffness of the shaft air bearings. In

Order to obtain any d~ia over a reasonable s-haft runtdourn time. it wa-.s nieces -

sary to care fully a-lclelrate the shaift to the starting speed of from 200 to 0300

XIand see if the rotfaion was stable liefore data were taken. This proce-

dlure was successful as thk' slope confidence interval shows (Table I, p. 24).

Althughthe xpeimet aI %~rl ~as preliminary inl nature. it ap~pears unl~kelv

that. the la-rge disc ccpanecis indicated in Figure 13 for positive wall Rieynolds

numbers wvere introduced by the experimental appar-ats. It is speculated that

4. Similar histabilitv was also noted for negative Rey-nolds numbers at
starting shaft speeds above about 300 rpmi.
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* - an instability, phenomenon similar to Taylor vortices exists. A qualitative

justification for this speculation follows. The critical Taylor number (6) is an

indicatiorn of vortex formation:

T ( (32)a V r

wh re W is the peripheral shaft speed, h is the annulus gap, r is the rotating

shaft radius, and v is the kinematic viscosity of the fluid.

In the present work the maximum sh:sft peripheral speed wvas N9. in.

per second. This shaft speed resulied in a critical Taylor number of 8.38 and

would indicate a stable condition at least for R = 0. The critical Taylor

number could not be calculated for positive or negative wall Reynolds number

since Taylor assumed the radial velocity component to be zero; however, the

circumferential veloc-ity distribution in the radial direction indicates that the

formation of Taylor vurtices ;s plausible. Figure 14 is a graph of the cir-

cuniferential velocity distribution in the radial direction for both positive and

negative wall Reynolds numbers. The velocity distribution for positive wall

Reynolds numbers aprn'irs similar (for over 50 percent of the gap) to what

could be expected for concentric rotating cylinders with a !argcr radial

clearance that was used. The critical Taylor number varies as the gap to the

3/2- power of the radial clearance according to equation (32). These consid-

erations indicate that the critical Taylor number quite possibly w:as reached

for positive -mall Reynolds numbers. On the other hand, the same kind of

-
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1.000-
R -+3.36

0.800-

R =+1.05

0.603

R 0.0000

J0

0.400 R -0.92

0.200R-41

0.090 - ---

0.63 QQ.6387 0.65 0.66 0.67 0.68 0.68951
SHAFT POROUS

SURFACE RADIAL DISTANCE FROM SHAFT CENTER CYLINDER z
SURFACE

Pgitre 14. Velociq~ distribution in annulus.
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speculation would predict stability for negative wall Reyniulds numbers since

the velocity distribution appears similar to what would be expected with a

much smaller gap.
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CIIAP'ER IV

SUMMLAXRY AND RECOMMENDATIONS

A. Summary

The present work addressed the problem of using a plane channel

approximation to obtain theoretical eCv'-,ussions for the di-ag forces associated A

with a shaft rotating in a porous cylinder with fluid injection, negative

Reynolds numbers, or fluid withdrawval, positi.ve Reynolds numbers. The

solution to the Navier-Stokes equations for fluid flow in the axial and radial

direction %%-as slown to be independent of the rotational motion of the shaft

when the plane channel approximation is used: it predicted the linear relan-

tionship of f n -with time in "coastdowv .,xperinients.

A staListica! analysis of the preliminary test results confirmed the

:ax'e linearity. The exnerimental data agreed reasonably well with the

theoretical predictions for negative waoll eynold, numbilers: however, the

e.perimental data for -ositive w-all Revnolds numbers did not agree with the

theoretical predictions. It was speculated that the lack of ngreement between

theoretical and experimental results for positive wall Reynolds numbers was

due to an in.itabiliv" similar to the formation (of Taylor vortices. However.

the stiffness properties of the shaft support air bearing (and associated shaft

instabi!itv) seemed to be such that any disturbance (e. ,. hydrodynamic

-~ -- - - -
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instability) external to the shaft would preclude stable rotation of the shaft.

This possibility is considered iin the following section on recommendations for

future work.

B. Recommendations

The experience gained during this work and the experimental results

suggest a continuation of this work in the pos'tive wall Reynolds number

region. A lack of agreement between theory and experiment was shown for

positive Reynolds numbers; the shaft support design was not suitable for

further investigation of possible causes. e. g.. the previously mentioned

speculation on Taylor vortex ferination. The use of precision instrument

bearings exibi•inug low constant dr-ag would result in a stiff shaft suspension

system that would allow operating speed in excess of 1000 rpm (much higher

than our present 300 rpm maximum). Such higher speeds would allow an

investigatit of the drag in the vicinity of the critical Taylor number. Addi-

tionaliy. prectisi, n instrument bearings would insure that an nxisymmetric

condition exists between the shaft and the porous cylinder. A small gap h

would delay the onset of Taylor vortices; however, a porous cylinder with a

more uniform diametr than t,,e one used in this work (0.003 in. out of

rou!nd with a 0. 050-in. annular gap) would be necessary.

The plane channel approximation apptied to the case of a shaft rotating

concentrically in a poruts cylinder predicted a lessening of the drag on the
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shaft when fluid is withdrawn through the porous cylinder. It would be

interesting to investigate further '.,hether there are, indeed, any conditions

for which this theoretical prediction could be confirmed by experiment to the

_ same extent as the present work has confirmed the predictions for fluid

injection.
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APPENDIX

A. Shaft Moment of Inertia

Equation (30) indicates that the moment of ine'tia should be known

precisely in order that G' (0) be determined accurately from the experimental

value. The shaft inertia was determined with the aid of two methods.

1. The shaft dimensions were held rigidly during machining and the

final dimensions were known precisely. This information, along with a weight

measurement of the shaft, w-.s used to calculate the mass moment of inertia

of the shaft.

2. The shaft moment of inertia was determined experimentally with

the aid of a method by H. MI. Angel (7). The shaft was suspended by three

strings and caused to oscillate about its longitudinal axis. The weight of the

shaft. the suspension string length. the shaft radius and the period of ocilla-

tion were used to calcuhltc the moment of inertia of the shaft. The equation

WR 2 p 2

used is J , where J is the mass moment of inertia of the shaft in

in. -lb--sec 2 . W is the shaft weight in pounds, P is the oscillation period in

seconds, and R and L are the suspension radius and length. respectively. A

typical trial resulted in these data:

W = 0.5105 lbf

R = 0.7320 in

P = 0.5226 see
L = 4.5 in.

42
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and a J of 4.209 x 10 in. -Ib -sec 2 . A small ring used to support the shaft

had a calculated value of 0. 135 x 10- in.-lbf-s,•c 2 . The resulting shaft mass

moment of inertia was 4.074 x 10-4 in. -lb f-scc2 . The calculated value as

determined by item I. above was 4. 130 x 10-4 in. -ib f-sec" or a difference of

0.056 x 10-4. This represents a possible error in measurement of less than

2 percent.

B. Sample Calculations

!. The way, Reynolds number can be expressed by the following:

ji A

A typical calculation using the condition impo)sed on run 6(o-1 is

i = 0.050S in.

an= 0.0036;317 lb /s'xe

M- 1 .013:3 lo-C 1b in. -sec

A -54.20s in. 2

It = 3.3057

"2. The values for (' (0) were calulated froan the experimental data.

A typical calculation rising the cdat. from run 60-1 is

G, (0) 3 (experinmental slope) •. .5

Experinmentl slope -0. 00:39/sec.
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K1 = I.01475 x 10-1 in-lb f-sec

J = 4.074 x 10-4 in-lbfsec2

3. The critical Taylor number may be expressed by the following:

Wh t-iT
T = %h 4-= 41.3

a V r

Run 55. 1 data may be-used for this calculation and are

W = 19.1 in./sec

r = 0.C386 in.

h = 0.0508

v = 0.03267in. 2/see

"The resulting Taylor number with these data is S.376.

C. Statistical "Lack-of- Fit-Test"

An F-test was conducted on the data to test the hypothesis that the

experimental results were in good agreement with the theoretical predictions

for G' (o). This test used the ratio of the sample variance of the theoretical

and experimental values of G' (0) alid the properly weighed sample variance

of the snaft rtudown data. The results of the test indicated that the differ-

ences between the theoretical and experimental values of G' (0) (Figure 13,

p. 31) for our ranges of "r sonable agreement" are not due to random

experimental errors in the rundown data. Sources of experimental bias in

-
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the apparatus (which was not originally designed for shaft rotation) were, of

course, expected. The magnitude of such bias is perhaps indicated by the

difference between the results for clockwise and counterclockwise shaft

rotation.


